

presenters

Robert Schulz

University Architect, SDSU

Susan O'Connell

Principal, AIA, DBIA, LEED-AP BD+C, AC Martin

Albert Valdivia

Project Executive Clark Construction

project description

- 90,000 GSF
- \$50m construction costs
- \$90m project costs
- Program:

Teaching labs

Research labs

PI offices

GS offices

Collaboration Spaces

Maker Space

Clean Room

MRI Suite

Café

3 Colleges, 3 Deans, 1 STEM Complex

FLOOR 0 (Basement)

Schematic Design Planning

Core + Building Service

1 Fluids Lab

Hydraulics Lab

Environmental Lab

Energy Lab

Mech, Thermal + Materials Lab

Soils Lab

MRI Suite

Meeting Room

Research Lab

Meeting Room*

"Sticky Space" Student Collaborative

"Sticky Space" Student Collaborative

Meeting Room*

* Could become PI office.

San Diego State University Engineering & Interdisciplinary Science Building

FLOOR 1 - Option B

Schematic Design Planning

San Diego State University
Engineering &
Interdisciplinary Science Building

FLOOR 2 - Option B

Schematic Design Planning

Core + Building Service

1 Outdoor Deck

2 BSL-2 Lab

3 Viromics Lab

Student Porch

Student/Faculty Lounge

6 Meeting Room

7 Meeting Room

8 SE Wing - Research Lab

SW Wing - Research Lab

STEM Quad N Porch

STEM Quad S Porch

San Diego State University Engineering & Interdisciplinary Science Building

FLOOR 3 - Option A

Schematic Design Planning

Student / Faculty Lounge

2 SW Wing - Research Lab

3 SE Wing - Research Lab

4 Meeting Room

Research Porch

San Diego State University Engineering & Interdisciplinary Science Building

Characteristics of each delivery method

	CM @ RISK	DESIGN/BUILD Competition	(progressive) COLLABORATIVE DESIGN/BUILD
Budget/GMP	Budget ROM set after Design Phases with contingencies for change	Budget fixed & set before design competition begins	Progressive GMP, budget fixed after DD
Pre-work	Conceptual program required to start design	Detailed program & RFP completed PRIOR to competition	Design exploration in Program verification and Schematic Design
Schedule	longer schedule due to less pre- work	Shorter schedule if pre-work is complete	Shortest schedule
Design Control	Allows maximum design control by owner, lots of time in design process	Allows the least design control by owner	Allows design control up front by owner
O/A/C Team Communication	Allows the most design communication between O/A/C	Allows the least design communication between O/A/C	Allows design communication from programming thru start of construction
Building User Communication w/Design team	Allows dialogue with building users, builder and design team	Allows the least dialogue with building users, builder and design team	Allows dialogue up front with users campus stakeholders and design team
Changes	Changes negotiated incrementally throughout design and construction phases	All changes after RFP are Change Orders	Early changes may be absorbed/traded, later changes in construction are Change Orders
Risk	Partnered approach controlling risk/costs O/A/C in open dialogue	Designed locked early, at award, responsibility for changes are the owners	Flexibility in SD's & DD's. Design locked down after DD, later changes are owners risk

Pull Planning with the D/B team right after the selection, scheduling all of our meetings with the D/B Team, consultants, agency reviews, campus facilities, user groups, vendor input

Decision Schedule

Schematic Design #2 - March 10/11th

Arch:

- Site positioning/site constraints, site sections
- Location of building service / receiving
- Location of all elevator and stair cores
- Location of all exterior access points
- Major MEP equipment room positions
- Simple conceptual massing
- Program distribution

Lab:

- Decision on program distribution
- Location and adjacencies for all Teaching Labs approved
- Location of each of the Centers and confirmation of arrangement of labs and rooms in each cluster
- Decision on separate or combined fabrication shops for Entrepreneurial Center and Creative Design Center
- Location of PI offices and student work stations relative to research lab space
- Ratio of each type of research lab
- Density and location of fixed support rooms within research areas.
- Fume Hood density: Floor by Floor, wing by wing
- Issue equipment lists for each lab space for users to fill out

Landscape:

Discuss exterior program/use opportunities

Managing design consultants

- Clear communication
- Homework with deadlines
- Encouraging "best guess based on experience"
- 1. Take the 3 options for heating/cooling the bedrooms and elaborate with LCC information and pros and cons. For each option define, size, location, make-up air options, cost magnitude and other factors that will help SDSU make a GOOD decision
 - FCU
 - Chill Beam
 - Valance
 - Other
- **2.** For equipment listed below provide: size, type, site position and required clearances
 - Emergency Generator
 - Transformers and switches
 - Fire Booster Pump
 - Sewer pump
 - Other large exterior equipment required
 - Roof top make-up air units
 - Bathroom exhaust fans and shafts
 - Stair pressurization fans
 - Other required roof top equipment

bring D/B subs on early

- 2 steps RFQ, RFP
- Program and 50% SD drawings
- overlap design engineers and D/B subs
- Involve team in selection
- Maintain appropriate contingencies

RFP scoring for d/b subs

Project Approach

- Staffing plan
- Availability
- Design Management
- Project Challenges
- Delay mitigation
- Schedule

Project Team,

- narrative &
- staff experience

VE ideas

- Creativity
- Feasibility

Interview

- Estimate Review
- Project Approach
- Unique qualifications

designing without users

1

 Large group (20+) discussion, "areas of study" in Energy research

2

 Medium group (10-15) discussion about the future of Energy research

3

 Medium group (8-10) discussion looking at lab layout precedents and partnerships with other disciplines

designing with out users

- Don't over-customize
- How would 7/10 PI's use this space?
- Trust your team's experience
- Benchmark peer institutions
- Don't over think the small stuff

ENGINEERING RESEARCH BUILDINGS

* STRUCTURES & MATERIALS ENGINEERING BLDG

University of California, San Diego

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: ?' - ?"

Level 2 - R: ?' - ?"

PHYSICS & NANOTECHNOLOGY BUILDING

University of Minnesota

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: 16' - 0"

Level 2 - R: 16' - 0"

SANDLER NEUROSCIENCES CENTER 19A

University of California, San Francisco

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: ?'-?"

Level 2 - R: ?' - ?"

HEALTH SCIENCE BIOMED RESEARCH BLDG 2

University of California, San Diego

Concrete Frame/Shear Wall

Floor to Floor Heights: Level B: 21' - 0"

Level 1 - R: 17' - 0"

MATERIALS SCIENCE & ENGINEERING BLDG

University of California, Riverside

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: 20' - 0"

Level 2 - R: 15' - 4"

CLEAN TECHNOLOGY LABORATORY BLDG

Washington State University

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: 16' - 0"

Level 2 - R: 16' - 0"

SCIENCE & ENGINEERING BUILDING 2

University of California, Merced

Steel Frame/Braced Frame

Floor to Floor Heights: Level B: 18' - 0"

Level 1 - R: 15' - 0"

ENGINEERING VI PHASE I

University of California, Los Angeles

Concrete Frame/Shear Wall

Floor to Floor Heights: Level B - 1: 18' - 0"

Level 2 - R: 15' - 6"

ENGINEERING RESEARCH BUILDING

University of Texas, Arlington

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: 16' - 0"

Level 2 - R: 16' - 0"

INTERDISCIPLINARY SCI & ENGINEERING BLDG

University of Delaware

Concrete Frame/Shear Wall

Floor to Floor Heights: Level 1: 16' - 0"

Level 2 - R: 16' - 0"

Future PI

"Dr. Marty Sereno, a psychologist and cognitive neuroscientist is a pioneering figure in the world of functional MRI...his successful recruitment provides SDSU with a wonderful opportunity to synergize research strengths in the cognitive neurosciences..."

Steve Welter VP of Research @ SDSU

"Swing Space"

- EIS demolition displaced 35 faculty
- \$6m budget for "Swing Space"
- 8 months to plan, design, bid, build and move into space for 35 people
- 12 different construction projects
 Built a new building
 Heavy renovation in 9 buildings
 Went over budget by \$1million
- Lessons Learned:

Make the move decisions earlier
Start planning earlier
Budget with more contingency

Peer Reviewers – are not built for speed Things to consider

- Share your overall schedule w/each reviewer
- Consider number of bid packages carefully
- Possibility and cost of "in-person" reviews
- Enlist University support w/reviewers
- Consider the plus/delta of new/unfamiliar systems

State Fire Marshall – is not built for speed How to plan

- Review SFM process with your teams during selection
- Code consultant required, budget for this
- Schedule meetings w/SFM upfront & regular
- Consider number of packages <u>carefully</u>
- Consider the plus/delta of new systems

CM @ Risk 5 Years

- Aligns with CSU procedures
- Lots of time for SFM
- Academics like more time

- Long drawn out process
- Bid after drawings are complete
- Owner responsible for changes \$

More time better decisions

D/B Collaboration 3 years

- **Escalation savings**
- Quick results, happy donors
- Users see immediate progress
- Subs on-board early
- Progressive GMP allowed changes
- D/B team energy remains high

- CSU Peer Review is challenging
- SFM is NOT built for speed

New Project: \$85m, Student Housing, 28.5 months

10 months Prop-CD's, 20 months construction, 5 separate packages

- **Soils**: Poor soils + tight site = \$\$\$\$
- **EIR:** EIR is concurrent with Design RISK
- **Utility connections:** Central Plant connection \$\$, City water requires major upgrade \$\$\$
- Food Service: Program was not well defined, changing, team behind on this element
- Modern to Mission Style:
 RFP Stage Modern architectural style \$\$\$
 Selection Changed to Mission Style \$\$\$\$

- Soils More site investigation before issuing RFP
- EIR Best to complete prior to RFP
- Utility connections: Study utility options and connections prior to RFP to allocate the budget
- Food Service: Check-in with users before work with the D/B team to solidify direction
- Modern to Mission Style: Change in style slows
 D/B team, has major effects on the budget

ANNUAL CONFERENCE & AWARDS PROGRAM CONTRACT WITH A SINGLE POINT OF RESPONSIBILI
TY. OWNERS SELECT DESIGN-BUILD TO ACHIEVE

BECK VALUE WHILE MEETING SCHEDULE, COST AND

